The Crystal and Molecular Structure of the Silver Nitrate Complex of cis,cis,cis-1,4,7-Cyclononatriene, $\mathrm{C}_{9} \mathrm{H}_{12}\left(\mathrm{AgNO}_{3}\right)_{3}$

Richard B. Jackson and William E. Streib ${ }^{1}$
Contribution No. 1399 from the Department of Chemistry, Indiana University, Bloomington, Indiana 47401. Received October 5, 1966

Abstract

The structure of the silver nitrate π complex of cis,cis,cis-1,4,7-cyclononatriene, $\mathrm{C}_{9} \mathrm{H}_{12}\left(\mathrm{AgNO}_{3}\right)_{3}$, has been determined by a three-dimensional single-crystal X-ray diffraction investigation. The complex crystallizes in space group R3c; cell dimensions for the triply primitive hexagonal cell are $a=16.258$ and $c=9.556 \mathrm{~A}$ at approximately -125°. The cyclononatriene ring is in the crown configuration and shows little or no distortion due to the complex formation. Each silver is associated with only one ethylenic bond at divergent ends of the π-bonded p orbitals. The silver ions are distorted 17° in the direction of the cis hydrogens.

TThe structure of cis,cis,cis-1,4,7-cyclononatriene, $\mathrm{C}_{9} \mathrm{H}_{12}{ }^{2-4}$ is known to have a crown configuration. ${ }^{5,6}$ Silver complexes of olefins are well known ${ }^{7}$ and several ${ }^{8-13}$ have been investigated by X-ray diffraction techniques. The present study was undertaken to further elucidate the geometry of the nine-membered ring system and to compare the bonding in the olefin with that of its silver complex.

Experimental Section

Data Collection. White needles of $\mathrm{C}_{9} \mathrm{H}_{12}\left(\mathrm{AgNO}_{3}\right)_{3}$ were prepared ${ }^{14}$ and supplied to us by Dr. Karl Untch. Irregular single crystals approximately $0.2 \times 0.2 \times 0.3 \mathrm{~mm}$ were cleaved and mounted, the first of these with the needle axis along the goniometer head axis. Preliminary Weissenberg and precession photographs indicated a rhombohedrally centered hexagonal unit cell, the hexagonal c axis corresponding to the needle axis. The conditions for nonextinction, $-h+k+l=3 n$ for $h k i l$ and $l=2 n$ for $h \hbar 0 l$, required the space group to be $R 3 c$ or $R \overline{3} c$. Cell dimensions obtained from film measurements and an approximate density (by flotation) of $2.9 \mathrm{~g} / \mathrm{cm}^{3}$ indicated six molecules in the hexagonal unit cell. It was assumed, and later verified, that the molecule had the same symmetry, $3 m-\mathrm{C}_{3 \mathrm{r}}$, as its parent compound. This symmetry condition restricted the space group to $R 3 c$, since $R \overline{3} c$ would have required the molecule to have $\overline{3}-\mathrm{C}_{3 \mathrm{i}}$ or $32-\mathrm{D}_{3}$ symmetry.

Two sets of three-dimensional, low-temperature intensity data were collected: initially (a) integrated Weissenberg multiple film data, using $\mathrm{Cu} \mathrm{K} \dot{\alpha}$ radiation, of levels hki0-hki 3 and $0 \mathrm{kil}-8 \mathrm{kil}$, and for later refinement (b) counter-diffractometer data, collected manually with Mo $\mathrm{K} \alpha$ radiation on a General Electric spectrogoniometer equipped with a single-crystal orienter and scintillation counter. Threefold redundant data were measured for 483 unique film intensities and 364 unique counter intensities. The integrated films were measured with a Nonius Model I densitometer. Both sets of data were collected at low temperature using a conventional nitrogen vapor cold stream in order to reduce thermal motion and to inhibit a gradual surface decomposition of the crystals. Improved hexagonal cell dimensions, obtained by least-squares fit

[^0]with diffractometer 2θ data, were $a=16.258 \pm 0.005$ and $c=$ $9.556 \pm 0.003 \mathrm{~A}$ at approximately -125°.

Computations. All calculations were performed on a CDC 3600 computer. The raw data were correlated and corrected for Lorentz and polarization effects using a program written at this laboratory. Standard errors for the film intensities were based on observed deviations during film correlation with a minimum error of $0.05 I_{\text {obsd }}$ to avoid accidental agreement. Standard errors for the counter data were based on counting statistics as described by Johnson. ${ }^{16}$ Cell dimensions and errors were determined using the least-squares program by Heaton, Gvildys, and Mueller. ${ }^{18}$ Patterson and elec-tron-density maps were computed using the Gvildys Fourier summation program. ${ }^{17}$ The Busing and Levy full-matrix leastsquares program ${ }^{18}$ was used for the structure refinement, and their function and error program ${ }^{19}$ was used for calculation of bond distances, angles, anisotropic parameters, and their respective standard deviations.

Structure Determination. The structure was solved by the heavyatom method. The x and y silver atom coordinates were determined from a two-dimensional Patterson map calculated from 40 hki 0 film intensities. Since there was only one silver atom in the asymmetric unit and the position of the origin along the c axis was arbitrary, we proceeded directly to a three-dimensional leastsquares refinement. Two cycles, varying the silver coordinates and the absolute scale factor, decreased the residual, $R=\Sigma| | F_{0} \mid-$ $\left|F_{\mathrm{c}}\right||/ \Sigma| F_{\mathrm{c}}$, from 0.41 to 0.22 . A three-dimensional Fourier map revealed the approximate positions of the carbon ring atoms. After two least-squares cycles refining silver and carbon coordinates, another difference map was computed and the nitrate group atoms were located. Further refinement of all coordinates (except hydrogen), scale factor, and isotropic temperature factors failed to lower R below 0.185 . The relatively high value of R at this stage of refinement led us to make a correction for systematic errors in the form of artificial temperature factors. The film data were collected over an extended period of time involving more than one crystal and several interruptions in the operation of the cold stream. It was therefore suspected that the various film packs may have been exposed at somewhat different temperatures and that this would constitute the major systematic error. The original intensities were corrected according to the relation $I_{\text {scaled }}=k_{i} I_{\text {obsd }} \exp \left(-B_{i}\right.$ $\sin ^{2} \theta / \lambda^{2}$), where $I_{\text {obsd }}$'s are the observed intensities for a given film pack, k_{i} is the correlation scale factor for that pack, and B_{i} is the individual film pack temperature factor which was fitted by least squares. Two cycles of isotropic refinement with the corrected intensities, followed by two cycles with anisotropic tempera-

(15) C. K. Johnson, Acta Cryst., 18, 1004 (1965).

(16) L. Heaton, J. Gvildys, and M. Mueller, "B-106, A Program For The Determination of Crystal Lattice Constants," Argonne National Laboratory, 1964.
(17) J. Gvildys, "B-149, Two- And Three-Dimensional Crystallographic Fourier Summation Program," Argonne National Laboratory, 1965.
(18) W. R. Busing, K. O. Martin, and H. A. Levy, "orfls, A Fortran Crystallographic Least-Squares Program," Oak Ridge National Laboratory, 1962.
(19) W. R. Busing, K. O. Martin, and H. A. Levy, "orffe, A Fortran Crystallographic Function and Error Program," Oak Ridge National Laboratory, 1964.

Table I. Observed and Calculated Structure Factors ${ }^{\text {a }}$

${ }^{a}$ The F_{0} 's were obtained from counter data. Columns contain values of $h, k, 10 F_{\mathrm{o}}, 10\left|F_{\mathrm{c}}\right|, 10 A_{\mathrm{c}}$, and $10 B_{\mathrm{c}}$. Unobserved reflections are designated by an asterisk.
ture factors for the silver atom, and a final cycle refining all parameters yielded a final R of 0.118 .
At this point the errors in the light-atom coordinates were still large and the set of counter intensity data was collected. Starting
with the previously determined parameters, two cycles of isotropic refinement, followed by two cycles with anisotropic temperature factors for silver, yielded $R=0.028$ and an acceptable set of standard deviations on the light atoms. The final calculated and
observed structure factors are listed in Table I which, in addition, includes 70 unobserved intensities estimated (at the raw-data level) as half the minimum observed intensity. The unobserved data were not used in the least-squares refinements.

Results

Atom coordinates, isotropic temperature factors, and their standard deviations are given in Table II. Interatomic distances and angles and their errors are given in Table III.

Table II. Atomic Coordinates and Isotropic Temperature Factors

| Atom | x / a_{1} | y / a_{2} | z / c | $B, \mathrm{~A}^{2}$ |
| :---: | :---: | :--- | :--- | :--- | :--- |
| Ag | $0.8717(1)^{a}$ | $0.2823(1)$ | 0.2441^{b} | $\ldots{ }^{c}$ |
| C_{1} | $0.7969(10)$ | $0.3549(11)$ | $0.3657(14)$ | $1.08(28)$ |
| C_{2} | $0.7306(11)$ | $0.2589(11)$ | $0.3624(12)$ | $1.34(27)$ |
| C_{3} | $0.6398(12)$ | $0.2111(12)$ | $0.2741(14)$ | $0.87(29)$ |
| O_{1} | $0.2868(7)$ | $0.3018(8)$ | $0.1806(10)$ | $2.03(22)$ |
| O_{2} | $0.2928(7)$ | $0.1792(7)$ | $0.2521(12)$ | $1.46(23)$ |
| O_{3} | $0.3825(8)$ | $0.2645(8)$ | $0.0805(11)$ | $2.56(24)$ |
| N | $0.3217(8)$ | $0.2483(8)$ | $0.1690(11)$ | $1.24(22)$ |

${ }^{a}$ Standard deviations are $\times 10^{4}$ for coordinates and $\times 10^{2}$ for B 's. ${ }^{b}$ The position of the origin along the c axis is arbitrary and was chosen for convenience in computing a suitable unit in the electron-density maps. © See Table IV for the anisotropic thermal parameters for silver.

Table III. Distances and Angles for $\mathrm{C}_{9} \mathrm{H}_{12}\left(\mathrm{AgNO}_{3}\right)_{3}$

Bonded Distances (A) and Angles			
$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.532 ± 0.020	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	$107.6 \pm 1.1^{\circ}$
$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.542 ± 0.019	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	$126.4 \pm 1.2^{\circ}$
$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.384 ± 0.020	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}$	$122.9 \pm 1.4^{\circ}$
$\mathrm{Ag}_{1}-\mathrm{C}_{1}$	2.379 ± 0.015	$\mathrm{Ag}_{1}-\mathrm{C}_{1}-\mathrm{C}_{2}$	$74.5 \pm 0.9^{\circ}$
$\mathrm{Ag}_{1}-\mathrm{C}_{2}$	2.411 ± 0.014	$\mathrm{Ag}_{1}-\mathrm{C}_{2}-\mathrm{C}_{1}$	$71.9 \pm 0.9^{\circ}$
$\mathrm{N}-\mathrm{O}_{1}$	1.259 ± 0.015	$\mathrm{O}_{1}-\mathrm{N}-\mathrm{O}_{2}$	$117.7 \pm 1.1^{\circ}$
$\mathrm{N}-\mathrm{O}_{2}$	1.259 ± 0.014	$\mathrm{O}_{2}-\mathrm{N}-\mathrm{O}_{3}$	$121.9 \pm 1.3^{\circ}$
$\mathrm{N}-\mathrm{O}_{3}$	1.225 ± 0.013	$\mathrm{O}_{1}-\mathrm{N}-\mathrm{O}_{3}$	$120.4 \pm 1.2^{\circ}$
Midpoint of $\mathrm{C}_{1}-\mathrm{C}_{2}$ to $\mathrm{Ag}_{1} 2.300 \pm 0.014$			
Nonbonded Distances (A)			
$\mathrm{C}_{2}-\mathrm{C}_{4}$	2.480 ± 0.020	$\mathrm{O}_{1}-\mathrm{O}_{2}$	2.155 ± 0.016
$\mathrm{C}_{3}-\mathrm{C}_{9}$	3.133 ± 0.027	$\mathrm{O}_{1}-\mathrm{O}_{3}$	2.156 ± 0.015
$\mathrm{Ag}_{1}-\mathrm{C}_{3}$	3.357 ± 0.016	$\mathrm{O}_{2}-\mathrm{O}_{3}$	2.172 ± 0.016
$\mathrm{Ag}_{1}-\mathrm{C}_{9}$	3.281 ± 0.017		

Distances (A) and Angles in Silver Environment

$\mathrm{Ag}_{2}-\mathrm{O}_{2}$	2.438 ± 0.012	$\mathrm{Ag}_{2}-\mathrm{O}_{9}$	3.190 ± 0.011
$\mathrm{Ag}_{2}-\mathrm{O}_{3}$	2.927 ± 0.011	$\mathrm{Ag}_{2}-\mathrm{O}_{12}$	3.240 ± 0.011
$\mathrm{Ag}_{2}-\mathrm{O}_{4}$	2.484 ± 0.010	$\mathrm{O}_{2}-\mathrm{Ag}_{2}-\mathrm{O}_{4}$	$97.7 \pm 0.4^{\circ}$
$\mathrm{Ag}_{2}-\mathrm{O}_{5}$	2.771 ± 0.012	$\mathrm{O}_{2}-\mathrm{Ag}_{2}-\mathrm{O}_{7}$	$111.5 \pm 0.3^{\circ}$
$\mathrm{Ag}_{2}-\mathrm{O}_{7}$	2.474 ± 0.010	$\mathrm{O}_{4}-\mathrm{Ag}_{2}-\mathrm{O}_{7}$	$86.3 \pm 0.2^{\circ}$
	(Midpoint of $\mathrm{C}_{4}-\mathrm{C}^{2}$	$-\mathrm{Ag}_{2}-\mathrm{O}_{7} 109$	$\pm 0.2^{\circ}$
	(Midpoint of $\mathrm{C}_{4}-\mathrm{C}$	$-\mathrm{Ag}_{2}-\mathrm{O}_{2} 108$	$\pm 0.2{ }^{\circ}$
	(Midpoint of $\mathrm{C}_{4}-\mathrm{C}^{\text {c }}$	$-\mathrm{Ag}_{2}-\mathrm{O}_{4} 140$	$\pm 0.2^{\circ}$
	Distances (A)	itrate Envi	nent
$\mathrm{Ag}_{2}-\mathrm{O}_{2}$	2.430 ± 0.012	$\mathrm{Ag}_{4}-\mathrm{O}_{1}$	2.474 ± 0.010
$\mathrm{Ag}_{2}-\mathrm{O}_{3}$	2.927 ± 0.011	$\mathrm{Ag}_{4}-\mathrm{O}_{3}$	3.190 ± 0.011
$\mathrm{Ag}_{3}-\mathrm{O}_{3}$	3.240 ± 0.011	$\mathrm{Ag}_{5}-\mathrm{O}_{1}$	2.484 ± 0.009
$\mathrm{Ag}_{3}-\mathrm{O}_{1}$	4.711 ± 0.010	$\mathrm{Ag}_{5}-\mathrm{O}_{2}$	2.771 ± 0.012

Dihedral Angles between Planes Each Defined by Three Atoms

$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$ and $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{4}$	$73.0 \pm 1.7^{\circ}$
$\mathrm{Ag}_{1}-\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{9}$	$107.8 \pm 1.5^{\circ}$
$\mathrm{Ag}_{1}-\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	$106.4 \pm 1.5^{\circ}$
$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$ and a, b plane	$49.3 \pm 0.4^{\circ}$
$\mathrm{O}_{1}-\mathrm{O}_{2}-\mathrm{O}_{3}$ and a, b plane	$42.4 \pm 0.8^{\circ}$
$\mathrm{Ag}_{2}-\mathrm{Ag}_{4}-\mathrm{Ag}_{5}$ and $\mathrm{O}_{1}-\mathrm{O}_{2}-\mathrm{O}_{3}$	$8.3 \pm 1.0^{\circ}$

As proposed, ${ }^{14}$ the cyclononatriene ring retains the crown configuration on complex formation with silver nitrate. The rings are stacked along the threefold axes

Figure 1. The environment of a silver ion (Ag_{2}) showing all neighboring oxygen atoms. Ag_{1} and Ag_{2} are related by a threefold axis; $\mathrm{Ag}_{3}, \mathrm{Ag}_{4}$, and Ag_{5} are related by a 3_{1} screw axis. $\mathrm{A} 3_{2}$ screw axis relates the NO_{3} groups 4-5-6, 7-8-9, and 10-11-12. Oxygens $\mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{O}_{4}, \mathrm{O}_{5}, \mathrm{O}_{7}, \mathrm{O}_{9}$, and O_{12} are within 4.0 A of the silver ion. $\mathrm{Ag}_{2}-\mathrm{O}_{2}, \mathrm{Ag}_{2}-\mathrm{O}_{4}, \mathrm{Ag}_{2}-\mathrm{O}_{7}$, and Ag_{2}-(midpoint of $\mathrm{C}_{4}-\mathrm{C}_{3}$) are the shortest distances and are in a roughly tetrahedral configuration (dotted lines).
of the crystal at intervals of $c / 2$, each ring being rotated 35.7° from its nearest neighbors above and below. Each silver ion interacts with only one double bond, all other double bonds directionally feasible being greater than 5 A distant. The closest approach of any two silver ions is 4.5 A . Several nitrate groups surround the silver ions (Figure 1); five oxygen atoms approach within 3 A , and three of these are close enough to 2.46 , the sum of the atomic radii, to suggest some degree of covalency. ${ }^{8}$ These three oxygens together with the midpoint of the interacting double bond form a roughly tetrahedral arrangement around silver.

The average $\mathrm{N}-\mathrm{O}$ bond length of 1.25 A compares well with values determined in other silver nitrate complexes ${ }^{8.10}$ and in AgNO_{3} itself. ${ }^{20}$ It is slightly greater than the value of $1.218 \pm 0.004 \mathrm{~A}$ reported ${ }^{21}$ for NaNO_{3}. The average $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle is 120°, and the group is planar within experimental error.

The local environment of the nitrate group consists of three silver ions $\left(\mathrm{Ag}_{2}, \mathrm{Ag}_{4}\right.$, and $\left.\mathrm{Ag}_{5}\right)$ within 3.25 A of the nitrogen atom which describe a plane somewhat above and parallel to the NO_{3} plane. Ag_{3} lies below and at a distance of 4.25 A from the nitrogen atom. As is indicated by the $\mathrm{Ag}-\mathrm{O}$ bond lengths in Table III, the silver-oxygen coordination is not simple. It appears as if each silver ion above the NO_{3} group interacts with two oxygens and that Ag_{3} is coordinated only to O_{3}.

Silver anisotropic temperature parameters, $U_{i j}$'s, are given in Table IV. Also tabulated are the direction cosines (ϕ, ψ, and ω corresponding to the cell edges a_{1}, a_{2}, and c, respectively) and root-mean-square displacements of the principal axes of the ellipsoid of vibration. The errors in the directions of the principal axes are large. The only general conclusion drawn is that the most extensive thermal vibration is approximately along the c axis but is tilted slightly so that principal axis P
(20) P. F. Lindley and P. Woodward, J. Chem. Soc., Sect., A, 123 (1966).
(21) R. L. Sass, R. Vidale, and J. Donohue, Acta Cryst., 10, 567 (1957).

Figure 2. The cyclononatriene ring with assumed hydrogen positions. The silver ion is shown interacting with carbons C_{1} and C_{2} and distorted 17° from the normal position (dotted lines) along the perpendicular bisector of the ethylene group. P, Q, and R are the principal axes of thermal motion for the silver ion. One π-bonded p orbital is shown in its normal position. The lower lobe is convergent with five other lobes below the ring.
(Figure 2) lies almost parallel to the plane $\mathrm{C}_{9}-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$. Therefore the silver motion is perpendicular to the direction of the p orbitals and allows the silver to remain approximately equidistant from the double bond throughout the vibration.

Table IV. Anisotropic Thermal Motion Parameters ${ }^{\text {a }}$

Values of $U_{i j}$ for Silver						
U_{11}	U_{22}	U_{33}	U_{12}	U_{23}	U_{13}	
0.01898	0.01829	0.03493	0.00968	0.00066	0.00299	
(0.00075)	(0.00073)	(0.00046)	(0.00072)	(0.00051)	(0.00051)	

Direction Cosines and Root-Mean-Square
Values of Principal Axes

Axis	ϕ	ψ	ω	$\sqrt{\mu^{2}}(\mathrm{~A})$
P	-0.84	0.87	0.17	$0.1283(31)$
Q	-0.50	-0.49	0.17	$0.1365(29)$
R	0.24	-0.07	0.97	$0.1904(14)$

${ }^{a}$ Anisotropic temperature factors were calculated and refined in the form $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k\right)\right]$ and were converted [D. W. J. Cruickshank, Acta Cryst., 19, 153 (1965)] to $U_{i j}$'s according to $U_{11}=\beta_{11} / a^{* 2} 2 \pi^{2}$, etc.

Discussion

The carbon ring geometry is almost identical with that of the uncomplexed cis,cis,cis-1,4,7-cyclononatriene. ${ }^{6}$ The only possibly significant change is a stretching of the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond from 1.34 to 1.38 A which would indicate a weakening due to the silver interaction as is also indicated by infrared studies of other silver π complexes. ${ }^{22}$ The increase in the normal trigonal angles to an average of 124° has the effect of separating the intraannular hydrogen atoms as discussed previously. ${ }^{6}$ It would appear, therefore, that the structure of the cyclic olefin is changed little, if at all, with silver complex formation.

At the request of a referee, an attempt was made to observe the effect of the hydrogen atoms on the ring geometry. The hydrogen positions (Table V) were not apparent in the difference Fourier maps and were therefore estimated using standard criteria. Two cycles of least-squares refinement resulted in a shortening of the $\mathrm{C}_{1}-\mathrm{C}_{2}, \mathrm{C}_{2}-\mathrm{C}_{3}$, and $\mathrm{C}_{3}-\mathrm{C}_{4}$ bond lengths to 1.372, 1.514, and 1.536 A , respectively. The angle $\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$ is
(22) H. Hosoya and S. Nagakura, Bull. Chem. Soc. Japan, 37, 249 (1964).
increased to $109.4^{\circ}, \mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$ to 126.9°, and $\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}$ to 123.8°. These values generally show poorer agreement with normal bond lengths and angles than those previously obtained (Table III). Also, with the exception of the angle $\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$, all shifts were within one standard deviation. Therefore the shifts were considered meaningless and Tables II-IV, which are based on the final refinement without the hydrogen atoms, were retained.

Table V. Estimated Hydrogen Coordinates

Atom	x / a_{1}	y / a_{3}	z / c
\mathbf{H}_{1}	0.859	0.383	0.434
\mathbf{H}_{2}	0.741	0.210	0.427
\mathbf{H}_{3}	0.625	0.141	0.242
\mathbf{H}_{4}	0.648	0.254	0.182

The $\mathrm{Ag}-\mathrm{C}$ distances of 2.379 and 2.411 A are within error of those obtained for the humulene-silver nitrate adduct, ${ }^{10,11} \quad \mathrm{C}_{15} \mathrm{H}_{24}\left(\mathrm{AgNO}_{3}\right)_{2}$, and the silver nitrate adduct of norbornadiene, ${ }^{13} \quad \mathrm{C}_{7} \mathrm{H}_{8}\left(\mathrm{AgNO}_{3}\right)_{2}$. Corresponding values for the silver nitrate adduct of cyclooctatetraene, ${ }^{8} \quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{AgNO}_{3}$, and its dimer, ${ }^{9} \quad \mathrm{C}_{16} \mathrm{H}_{16}{ }^{-}$ AgNO_{3}, are approximately 0.1 A longer due to the interaction of two or more ethylenic bonds with each silver ion.

The slight difference in the two $\mathrm{Ag}-\mathrm{C}$ distances has been observed in all the silver π complexes thus far studied in detail. Turner and Amma ${ }^{23}$ have explained the discrepancy for silver aromatic complexes in terms of molecular orbital theory. The 5 s orbital of silver is expected to accept electrons from the bonding π orbital (e_{1}) and the filled d orbitals to donate electrons to the antibonding π orbital (e_{2}). The silver ion seeks a position allowing maximum overlap, which is directly above one of the carbon p lobes for the 5 s , but is above and symmetrically between two carbon atoms for the d orbital. It is postulated that the equilibrium is a compromise somewhat off center, hence the difference in bond lengths. The same argument can be applied to Ag-olefin complexes although the observed discrepancy is considerably less than in Ag-aromatic complexes.

Several considerations enter a rationale for the fact that in $\mathrm{C}_{9} \mathrm{H}_{12}\left(\mathrm{AgNO}_{3}\right)_{3}$ the plane $\mathrm{Ag}_{1}-\mathrm{C}_{1}-\mathrm{C}_{2}$ is not perpendicular to the $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{9}$ plane but rather forms an angle of 107° with it (Figure 2). This distortion of 17° from the normal silver position which would assure maximum overlap with the π orbital can be explained by (a) steric repulsions between the silver ion and the intraannular hydrogens or carbon atoms C_{3} and C_{9}; (b) a twisting of the π-bonded p orbitals themselves so that silver is, in fact, in the optimum position for overlap; or (c) homoconjugation.

That steric effects play an important role in forcing the silver ion away from the ring is unlikely since in the normal position silver is encircled by a nearly symmetrical ring of hydrogen atoms (Table VI). Carbon atoms C_{9} and C_{3} would be too far away (3.3 A) and in unfavorable directions to exert much steric influence. Also there is no evidence of twisting of the
(23) R. W. Turner and E. L. Amma, J. Am. Chem. Soc., 88, 1877 (1966).

Table VI. Estimated Hydrogen to Silver Distances (A)

$\mathrm{Ag}_{1}-\mathrm{H}_{1}$	2.53	$\mathrm{Ag}_{\mathrm{n}}-\mathrm{H}_{1}{ }^{a}$	2.78
$\mathrm{Ag}_{1}-\mathrm{H}_{2}$	2.54	$\mathrm{Ag}_{\mathrm{n}}-\mathrm{H}_{2}$	2.78
$\mathrm{Ag}_{1}-\mathrm{H}_{3}$	3.49	$\mathrm{Ag}_{\mathrm{n}}-\mathrm{H}_{3}$	3.26
$\mathrm{Ag}_{1}-\mathrm{H}_{4}$	3.49	$\mathrm{Ag}_{\mathrm{n}}-\mathrm{H}_{4}$	3.04
$\mathrm{Ag}_{1}-\mathrm{H}_{5}$	3.40	$\mathrm{Ag}_{\mathrm{n}}-\mathrm{H}_{5}$	2.94
$\mathrm{Ag}_{1}-\mathrm{H}_{6}$	3.40	$\mathrm{Ag}_{\mathrm{n}}-\mathrm{H}_{6}$	3.15

${ }^{a} \mathrm{Ag}_{\mathrm{n}}$ refers to silver in the normal position estimated at $x / a_{1}=$ $0.850, y / a_{2}=0.289, z / c=0.187$.
C_{3} and C_{9} atoms about the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond. The dihedral angle between $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$ and $\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{9}$ is $1.8 \pm 2.3^{\circ}$.
That the divergent lobes of the p orbitals are twisted outward from their normal positions (assuming sp^{2} hybridization) is consistent with the argument ${ }^{24}$ that in cis-ethylenic systems the π-bonded carbon p orbitals are distorted in order to relieve strain due to bond oppositions. (It is noteworthy that for the trans double bond in the humulene-silver nitrate adduct the silver ion is distorted only 5° from the normal position, whereas for the cis double bonds in the norbornadiene adduct, the distortion is approximately 24°.)
Finally, a distortion of the p orbitals could be attributed to a rotation of the p orbitals about the $\mathrm{C}_{1}-\mathrm{C}_{2}$
(24) P. D. Gardner, R. L. Brandon, and N. J. Nix, Chem. Ind. (London), 1363 (1958).
axis affecting a further spreading of the divergent lobes and a congestion of those which are convergent. The driving force for such a distortion would be a stabilization due to increased overlap of the convergent lobes and resulting homoconjugation. It is unlikely that homoconjugation is a very important factor in the bonding of the complex. Homoaromaticity in cyclononatriene itself is expected to be small according to simple LCAO-MO calculations, ${ }^{3,4}$ and it would seem reasonable that the silver ion would tend to withdraw electrons during complex formation, thus further decreasing any existing p-orbital overlap. Also, increases in the trigonal carbon angles and a decrease in the tetrahedral angles of the ring, which would be expected to accompany significant homoconjugation, are small and can be explained by the intraannular hydrogen interactions.
Acknowledgments. It is a pleasure to acknowledge Miss Joyce Heckman in connection with a National Science Foundation High School Science Student Summer Institute, and Mr. Chun-che Tsai and Mrs. Christine Schubert Wright for their assistance in the data collection. We also acknowledge financial support by the National Science Foundation, and a NASA Traineeship Fellowship (R. B. J.).

Proton and Phosphorus-31 Nuclear Magnetic Resonance Studies of Tetraalkoxyphosphonium Hexachloroantimonates and Related Compounds ${ }^{19}$

Jack S. Cohen ${ }^{1 \mathrm{~b}}$
Contribution from the Department of Isotope Research, Weizmann Institute of Science, Rehovoth, Israel. Received November 15, 1966

Abstract

Tetramethoxyphosphonium hexachloroantimonate (Ia) was obtained in moderate yield from the reaction between trimethyl phosphite and methyl hypochlorite in the presence of antimony pentachloride (reaction ii, $\mathrm{X}=\mathrm{O}$). Proton and phosphorus-31 nuclear magnetic resonance (nmr) and infrared and conductivity studies support this formulation. Evidence was also obtained for the formation of the triethoxymethoxy- and triphenoxymethoxyphosphonium cations. These results confirm that such salts are intermediates in the reaction between phosphite triesters and alkyl hypochlorites. The control reaction (iii) between trimethyl phosphite and antimony pentachloride gave a minor product which was shown to be trimethoxymethylphosphonium hexachloroantimonate (II), the intermediate from intermolecular transmethylation.

Current advances in the understanding of the mechanisms of phosphorus reactions owe much to the detection and characterization of four- and five-covalent intermediates resulting from valency expansion of phosphorus(III) compounds. ${ }^{2-11}$ While stable pentaalkoxy-

[^1]phosphoranes ${ }^{2}$ and trialkoxyalkylphosphonium salts ${ }^{3,4}$ have been isolated, the tetraalkoxyphosphonium salts have only been tentatively identified as transient intermediates. Denney and Relles ${ }^{12}$ observed their formation using proton nmr in the reactions between trialkyl phosphites and neopentyl hypochlorite (reaction i).

[^2]
[^0]: (1) Author to whom correspondence should be addressed.
 (2) P. Radlick and S. Winstein, J. Am. Chem. Soc., 85, 344 (1963).
 (3) K. G. Untch, ibid., 85, 345 (1963).
 (4) K. G. Untch, ibid., 85, 4061 (1963).
 (5) K. G. Untch and R. J. Kurland, J. Mol. Spectry,, 14, 156 (1964).
 (6) W. R. Roth, P. Goebel, R. L. Sass, R. B. Turner, and A. P. Yui, J. Am. Chem. Soc., 86, 3178 (1964).
 (7) M. A. Bennett, Chem. Rev., 62, 611 (1962).
 (8) F. S. Mathews and W. N. Lipscomb, J. Phys. Chem., 63, 845 (1959).
 (9) S. C. Nyberg and J. Hilton, Acta Cryst., 12, 116 (1959).
 (10) J. A. Hartsuck and I. C. Paul, Chem. Ind. (London), 977 (1964).
 (11) A. T. McPhail and G. A. Sim, J. Chem. Soc., Sect. B, 112 (1966).
 (12) M. G. Newton and I. C. Paul, J. Am. Chem. Soc., 88, 3161 (1966).
 (13) N. C. Baenziger, H. L. Haight, R. Alexander, and J. R. Doyle, Inorg. Chem., 5, 1399 (1966).
 (14) K. G. Untch and D. J. Martin, J. Org. Chem., 29, 1903 (1964).

[^1]: (1) (a) A preliminary account of this work was given in J. S. Cohen, Tetrahedron Letters, 3491 (1965); (b) Department of Pharmacology, Harvard Medical School, Boston, Mass. 02115.
 (2) (a) F. Ramirez and N. B. Desai, J. Am. Chem. Soc., 85, 3252 (1963); (b) F. Ramirez, Pure Appl. Chem., 9, 337 (1966).
 (3) K. Dimroth and A. Nurrenbach, Angew. Chem., 70, 26 (1958); Chem. Ber., 93, 1649 (1960).
 (4) F. G. Verkade, T. J. Hutteman, M. K. Fung, and R. W. King, Inorg. Chem., 4, 83 (1965).
 (5) D. B. Denney and H. M. Relles, J. Am. Chem. Soc., 86, 3897 (1964); 87, 138 (1965); 88, 1839 (1966).
 (6) R. G. Harvey and E. R. DeSombre, "Topics in Phosphorus

[^2]: Chemistry," Vol. 1, Interscience Publishers, New York, N. Y., 1964, p 57.
 (7) B. Miller, ref 6, Vol. 2, 1965, p 133.
 (8) G. M. Blackburn and J. S. Cohen, ref 6, Vol. 6, in press.
 (9) H. N. Rydon, Special Publication No. 8, The Chemical Society, London, 1957, p 61; H. N. Rydon and B. L. Tonge, J. Chem. Soc., 3043 (1956).
 (10) O. Mitsunobu, T. Obata, and T. Mukaiyama, J. Org. Chem., 30, 101, 1071 (1965).
 (11) B. Miller, J. Am. Chem. Soc., 88, 1841 (1966).
 (12) D. B. Denney and H. M. Relles, Tetrahedron Letters, 573 (1964).

